panSL: A schema-language encompassing user interface and
security aspects

By Bjgrn Erling Flgtten
Updated April 2012: Added description of Formulas as new section 2.1.

Updated March 2012: Added syntax highlighting for most of the panSL-code and hyperlinks to
panSL reference pages and sample pages. Some minor editing done in order to clarify meaning.

Updated February 2012: Added two new sections, 6.1 and 6.2, detailing use of SubNames enabling
for instance automatic generation of ER diagrams and user friendly descriptions. Use of underscore
as line-continuating character specified in section 17.

P

First preliminary draft January 2012

Summary

panSL is a schema-language that simplifies the development process of database-centric
applications by simultaneously expressing concepts within the areas of databases, entity relations,
object models, user interfaces and security.

We show how panSL reduces the number of cognitive areas where one has to specify aspects of a
database-centric application. For simple projects the whole specification can be encompassed in a
single text file.

We also argue that panSL is suitable in the preliminary phase of complex software projects by
making it easier to involve ordinary users in the specification and prototyping phase. This is
ensured primarily by a simple intuitive syntax and by automatic generation of a prototype user
interface.

Note: An HTML-version of this document is available at panSL.org, with hyperlinks for every
code-example using the AgoRapide.com Implementation of panSL. Every code-example may thus
be tested immediately, showing how database schemas, object oriented programming code and a
graphical user-interface may be generated from the code-examples.

Note: Reference information is available at panSL.org/Reference. More samples are available at
panSL.org/Samples.

Contents

1 Background, supporting different areas of software development within one lan-
guage

2 General concepts, property types and the ”schema-tree”

2.1 Formulas, deriving a PropertyType from other PropertyTypes.

3 Enumerations (enums)

4 Relations and the easy change between one-to-many and many-to-many relations

5 Inheritance, mismatch between object oriented world and relational database
world

6 Inheritance and relations, experimenting with relationships

6.1 SubNames. Ul, Model, ER diagram and user-friendly description of relations, distinc-
tion between singular and plural oL

6.2 Tree structures o

7 Complex types, reuse of property types

8 Reporting and the ”Identification Usefulness” concept

9 Default ordering of entities and types (subclasses)

10 Logging of access and changes to the database

11 Access rights and roles, fine grained access to underlying properties

12 Access to specific entities (in production / online access management)

13 Log in process, identificators, username and password

10

12

13

13

14

14

15

16

14 Schema access and administrator roles, boot-strapping a new implementation

15 Granting access rights through relationships

16 Meta tags, future versions of panSL

17 Formal specification of panSL

18 Simplifications

19 Use of panSL today, MyLittleDatabase.com and AgoRapide.com

20 Conclusion, how panSL can contribute to cheaper and better software develop-
ment

21 About the author

18

19

20

23

25

25

26

1 Background, supporting different areas of software
development within one language

Software development is much about repetition of the same principles and tasks over and over
again.

There is a continued drive for improvement of this situation by the relentless introduction of new
paradigms, ”"best practices”, frameworks, programming languages, compilers and other tools.

panSL is a pragmatic attempt to remove some of the repetition by encompassing more aspects
within a single language. It started as a personal need of the author related to a business idea for
peer-to-peer insurance. A complex datamodel was required but it was not desired to build an
expensive web-prototype just for discussing the idea with others. Instead the author started
experimenting with a general solution for expressing complex datamodels while simultaneously
enabling automatic creation of corresponding user interfaces.

Some tradeoffs are accepted, panSL is not meant to implement every possible feature. panSL is a
pragmatic solution especially suited for simple problems and preliminary prototyping.

The author aknowledges the existence of many other excellent approaches for this problem area
and does not claim to possess a "silver bullet” of any kind (yet).

panSL supports concepts central to different areas within software development:

1) Relational databases: Tables, fields and relations. ER-diagrams.

2) Object oriented programming (OOP): Inheritance, complex types and enumerations (enums).
3) Security: Access rights, "log in” methods, logging.

4) User interface: Input validation, localization, reporting.

2 General concepts, property types and the ”schema-tree”

Central concepts of panSL are PropertyTypes and relations between PropertyTypes.

A property type may be something like ”Person” or ”First name”. A relation (not in the database
relational sense) between these two may specify that ”First name” is an obligatory element of
"Person”. Indentation is used to specify such relations. Example:

Person
First_name
Last_name

The number of indentation steps is not important as long as it is consistent. Underscore is used for
space (an Implementation should change this back to space in the user interface). This first very
simple example also hints about the tree structure of panSL where entities (also called root
property types) are specified without indentation and underlying properties are organized
hierarchically by deeper and deeper levels of indentation.

Any Implementation of panSL should be able to infer that ”First name” is of DataType ShortText
and that the Cardinality for the relation is Obligatory. A complete definition might look like this:

Person Heading
First_name ShortText Obligatory
Last_name ShortText Obligatory

This shows how panSL uses keywords for concepts like DataType and Cardinality (explanation of
the other concepts with corresponding keywords will follow later in this document). But often these
keywords constitue an unneccessary complication. For complex models this will just result in a lot
of redundant text making the model harder for the human eye to read. Unneccessary keywords are
therefore eliminated or shorthanded as much as possible.

For transfer of schemas between different Implementations however, it might actually be desired to
use the complete definition with all the keywords in clear text, in order to reduce the risk of
different systems using different methods of simplification.

If we wanted to add a new property type called ”Description” but which is not Obligatory we
might use something like:

Person
First_name
Last_name
Description ShortText Optional

If more than one instance is possible Cardinality Many may be used:

Person
First_name
Last_name
Phone_number Many

Note that Many is actually a simplification of DataType ShortText and the actual Cardinality
ZeroToMany. ShortText OneToMany may also be used, meaning that at least one phone-number is
obligatory and additional numbers may be added optionally.

Examples of other DataTypes are Integer, Decimal and Date, for instance:

Person

First_name

Last_name
Date_of_birth Date
Age Integer

More specialized datatypes are SMS and EMail. These could be used to enable features like
sending one-time passwords as SMS or EMail. The idea here is to support common datatypes
occuring frequently in real-life and at the same time giving hints through panSL for what the
datatype might be used for.

The more information that can be given in this manner through panSL the more functionality may
be included when source-code for an actual Applicationlmplementation is generated.

Examples of even more advanced datatypes are ”Datelnterval” for specifying ”From date” and ”To
date” as one single property type. This would enable the user interface of an Implementation to
enforce better validations of data entered by the user.

2.1 Formulas, deriving a PropertyType from other PropertyTypes.

A PropertyType may be calculated from other PropertyTypes through the use of Operators and
Functions.

Person
First_name
Last_name
Full_name = Concat(FirstName, " ", LastName)

An Implementation should support all common spreadsheet Functions and Operators.

3 Enumerations (enums)

The elements of an Enumeration (enum) are separated with commas like this:

Person
First_name
Last_name
Gender
Male, Female, Unknown

The representation above is a Simplification of repeated DataType Existence and Cardinality
ChooseOne like this:

Person
First_name

Last_name

Gender
Male Existence Chooselne
Female Existence Chooselne
Unknown Existence Chooselne

The non-simplified example is given for completeness only, it does not give any meaningful
additional information.

4 Relations and the easy change between one-to-many and
many-to-many relations

We have already seen relationships like this:

Person
First_name
Last_name
Phone_number Many

In a relational database management system this would be expressed as two tables, one called
Person and one called Phone_number, with a one-to-many relationsship between Person and
Phone_number. panSL does not uses the keyword "relation” for such simple cases. The single
keyword Many is sufficient, making it dramatically easier for an ordinary user to understand the
schema.

When entities relate to other entities panSL uses named relationsship. The simplest form of named
relationship is when an entity is related to itself. For instance a person with friends:

Person
First_name
Last_name
Friends RelationMany

RelationMany is a Simplification of DataType Relation and Cardinality ZeroToMany.

Relations between different entities are specified like this:

Person
First_name
Last_name

Car_ownership RelationMany
Car

Mark

Model

Car_ownership RelationOne

One person may own many cars but a car may only be owned by a single person. Note that
relationships are named. It is the name, ”Car ownership” in this case, that binds the two entities
together.

Linguistically, the following version is better suited for generating a good user interface:

Person

First_name

Last_name

Cars | Car_ownership RelationMany
Car

Mark

Model

Owner | Car_ownership RelationOne

This feature is called SubNames and is described in more detail in a separate section later in this
document. The feature again shows how panSL is suitable for specifying both database aspects and
user interface aspects.

Many-to-many relations are specified like this:

Person

First_name

Last_name

Car_ownership RelationMany
Car

Mark

Model

Car_ownership RelationMany

In this example we imagine that a car may be owned by more than one person.

We just showed how extremely simple it is to change from a one-to-many to a many-to-many
relation with panSL. This is much more complicated to implement either in a traditional relational
database schema or in an object oriented programming model.

In the database case for instance we would need to introduce a whole new third table in order to
keep track of the relationships. By using panSL for preliminary prototyping of systems it is possible
to easily play around with the datamodel until it feels "right”. An Implementation using panSL,
like AgoRapide.com for instance, is then able to quickly autogenerate the necessary databases

schema (and other aspects of the project), drawing a small demand on resources for getting started
with a project, and almost eliminating the cost of early mistakes.

5 Inheritance, mismatch between object oriented world
and relational database world

Unit

Person Type
First_name
Last_name
Date_of_birth Date

Organisation Type
Name
Registration_number

Group Type
Name

EMail_address
Postal_address

Type is a Simplification of DataType Heading and Cardinality ChooseOne. ChooseOne means that
one specific property type has to be chosen among all PropertyTypes with cardinality ChooseOne.

The schema specifies, in object oriented terms, an abstract superclass called ”Unit” with three
inherited subclasses, ”Person”, ”Organisation” and ” Group”. Common property types between all
three subclasses are ”Email address” and ”Postal address”, these are placed within the superclass
”Unit”. All other property types are placed within their respective subclassses.

The representation is quite natural from an object oriented view. For storage in a relational
database an Applicationlmplementation must choose an ”impedance mismatch resolution”
approach to use, either

a) four tables, ”Unit”, " Person”, ” Organisation”, ” Group” which would reflect the object classes
(called E/R approach or Table per type TPT), or

b) three tables ”Person”, ”Organisation”, ” Group” which would reflect the object instances (called
OO-approach or Table per concrete class TPC), or

c) one table "Unit” which is a pragmatic approach, using null-values for unused fields (called
null-value approach / Table per hierarchy TPH).

An Implementation for rapid software development, AgoRapide.com, gives the user a choice of
desired approach. panSL in itself is agnostic regarding which solution is optimal but the problem is
expressed in a manner easily facilitating different approaches. If for instance a database-schema in
SQL was used instead of panSL, it would be difficult to infer the inheritance situation when making
an object-model representation.

6 Inheritance and relations, experimenting with
relationships

The following simple representation gives powerful possibilities for experimenting with
relationships. Employees of an organisation should be a physical person, ”Person” in this case. On
the other hand, members of a group could be anything, other groups, persons or organisations. We
can specify this like:

Unit
Person Type
First_name
Last_name
Date_of_birth Date
Employment RelationOne
Organisation Type
Name
Registration_number
Employment RelationMany
Group Type
Name
Group_membership RelationMany

EMail_address
Postal_address
Group_membership RelationMany

Small changes in the desired structure will lead to great changes in the underlying database
schema, object oriented programming code and user interface.

panSL facilitates easy generation of a live user interface. By playing around with ”live” data the
schema-model becomes much easier to understand and analyze. This makes it very easy for
ordinary users to catch design mistakes like allowing groups to be employees of a company.

By using panSL in the preliminary development phase through an Implementation like
AgoRapide.com costly mistakes can therefore be avoided.

Another example: If it is desired to allow a person to be employed by many organisations then just
one change has to be made, changing the text " Employment RelationOne” to ”Employment
RelationMany™”.

The path from schema to live user interface is short and simple, making it possible to experiment
with many different strategies and then just discard the unsuccessful ones.

10

6.1 SubNames. Ul, Model, ER diagram and user-friendly description
of relations, distinction between singular and plural

For better generation of ER-diagrams, object models and UI (User interfaces) it is possible to
specify the relationsship in more detail with SubNames as follows:

[UIName] | [ModelName] | [ERDiagramRole] | [UserfriendlyName| / IdentificatorName

The right-most part, after the last | that is [UserfriendlyName] / IdentificatorName, must be
identical at both places where the relation occurs in the schema (note the use of / (slash) as
deliminator, not |). The names to the left may differ.

If a particular name is not given the name of its closest right-hand neighbour is used instead. As a
minimum the IdentificatorName must be specified.

The schema just given could in this manner be written like this:

Unit/Units
Person/Persons Type
First_name
Last_name
Date_of_birth Date
Employer|Is_employed_by|Employment/Person_org RelationOne
Organisation/Organisations Type
Name
Registration_number
Employees|Employs|Employment/Person_org RelationMany
Group/Groups Type
Name
Members |Has | Group_membership/Group_unit RelationMany

EMail_address
Postal_address
Groups | Is_member_of | Group_membership/Group_unit RelationMany

Note that it is still possible to add [UIName] to the left of [ModelName| but in the example given
the names are considered identical and [UIName| has therefore been left out.

The rest of this document will mainly, for the sake of simplicity, not use SubNames.

6.2 Tree structures

For tree structures, that is when a PropertyType refers to itself through a relation, SubNames must
be used in order to distinguish the roles as follows:

11

Person
First_name

Last_name
Supervisor|Is_supervised_by|Supervision RelationOne
Subordinates|Supervises|Supervision RelationMany

Note: If the role is identical, for instance ”Friend”, then the relation need to be written only once,
as already shown earlier in this document:

Person
First_name
Last_name

Friends RelationMany

7 Complex types, reuse of property types

The tree-like structure of panSL may be extended as deep as desired, for instance:

Company
Name
Address
Street
Postal_code
City

Address in this case is regarded as a complex type. For a relational database an
ApplicationImplementation might choose to use a separate table. In the object oriented world it
will typically constitute a separate class or struct. In the user interface it will typically constitute a
heading.

An Implementation should be aware of practical limitiations, like maximum allowed identifier
length when generating database schemas, programming code and code files. If a Person object in
the example just given is stored in a single database table, the fields would typically be called

7 Address_Street”, 7 Address_Postal_code” and ” Address_City”. Deeper levels of nesting would
generate corresponding longer identifiers.

Once a complex type has been defined in the schema-tree it does not have to be repeated further
down. Only the first line is needed and allowed. Example:

Company
Name
Office_address|Address
Street

12

Postal_code
City
Delivery_address|Address

7 Address” has only to be defined once. Note the use of SubNames in order to distinguish an office
address from a delivery address.

Datatype has to be identical when a property type is repeated like this Other parameters like
Cardinality and IdentificationUsefulness (see later in this document) may differ. By this it also
follows that the names of different property types have to be unique even if they are placed at
different locations in the schema tree.

8 Reporting and the ”Identification Usefulness” concept

Any good reporting system should be able to link entities together. A web-based system for
instance, showing a table of cars should have hyperlinks linking to the respective owners. When
searching for persons a quick list of possible results must include the necessary information making
it possible for the user to make a choice.

panSL includes a concept called IdentificationUsefulness which is used to specify what identification
information should be given in such links.

Person
First_name Essential
Last_name Essential

Date_of_birth Date

In this case it is specified that any hyperlink to a person, or any quick search-result or similar,
should include the persons first name and last name but not his or her date of birth.

Other IdentificationUsefulness keywords, in addition to Essential, are Useful and Additional.

When using inheritance it is often natural to specify Essential together with Type, so any
shortlisting or hyperlink clearly shows what kind of entity (which subclass) is specified.

9 Default ordering of entities and types (subclasses)

The keyword Default may be used to indicate what entity-class or type (subclass) we would like the
user interface to present first. Example:

Entity

13

Corporation Type Default2

Name

Person Type Defaultl
First_name Essential
Last_name Essential

This indicates that the user should be shown a list of persons first or given the opportunity to
create a new person first. ”Corporation” should be the second priority.

Note: The keyword-name ”Default” is not considered optimal and might be changed in the future.

10 Logging of access and changes to the database

A common functionality in many applications is logging of changes to the data. panSL supports
this through a DataType called History with corresponding AccessType specifying which of Create,
Read, Update and Delete should be logged.

Since logging of Create, Update and Delete is quite common, the abbrevation Log may be used:

Person
First_name
Last_name
Changes Log

This is equivalent to the full specification:

Person
First_name
Last_name
Changes History ZeroToManyReverseAdd Create Update Delete

11 Access rights and roles, fine grained access to
underlying properties

For every PropertyType access rights may be specified by AccessRole. AccessRole consists of
AccessType (Create, Read, Update or Delete), immediately followed by Role (Nobody,
Administrator, Owner, Everyone, Anonymous) in a single keyword.

The common combination of Create, Update and Delete is supported as Change:

14

Person ReadEveryone ChangeOwner
First_name
Last_name

This means that everyone (meaning all recognized entities) are allowed read access but only the
entity considered as owner is allowed to do changes.

If the same role is required for all AccessType only the Role has to be given:

Person Owner
First_name
Last_name

In this example Owner is a Simplification of CreateOwner, ReadOwner, UpdateOwner and
DeleteOwner.

AccessRole may be specified multiple times at any place in the schema-tree. For instance

Person ReadEveryone ChangeQOwner
First_name
Last_name
Sensitive_health_info Owner

Everyone may read general information about a person but sensitive health information should
only be accessible by the owner.

12 Access to specific entities (in production / online
access management)

Access may also be given to specified entities, that is entities identified by their database primary
keys in a specific Applicationlmplementation:

Money_transfer Create(42) ReadEveryone UpdateNobody DeleteNobody
Transfer_date Date
Amount Decimal
From_account RelationOne
To_account RelationOne

This means that only the entity with primary-key 42 is allowed to create a money-transfer,
everyone may read it and it cannot be changed after creation. It is implicit that this only gives

15

meaning after an Applicationlmplementation is up and running and an entity with primary-key 42
has been defined.

The entity with primary-key 42 would in a specific Applicationlmplementation typically consist of
a group to which can be added persons or other groups.

Access to specific entities is an example of how panSL may be used in quite diverse areas of
application management. The feature is used by MyLittleDatabase.com, eliminating the need for a
separate access-management application.

An Applicationlmplementation, for instance with the concept of users, might also choose to let its
users give access to other user. A feature like this is probably unnecessary to specify within panSL,
but it might be considered.

13 Log in process, identificators, username and password

By "log in process” is meant the method of which a user of an Applicationlmplementation is
recognized, in order to give the user the necessary access rights for perfoming his or her tasks. We
use the term ”entity being impersonated” to mean the current logged in user for a given session.

panSL supports two concepts for ”logging in” to a specific Applicationlmplementation:

a) Traditional, by using DataTypes Username and Password:

Person
First_name
Last_name
Username Username
Password Password

The Implementation should take this as a hint to generate log in functionality by asking for
Username and Password in the traditional manner. The entity recognized (in this case a ”Person”)
is then regarded as the entity currently being impersonated.

b) By using a Loginldentificator like SMS or EMail

Person
First_name
Last_name
Mobil_phone SMS
Email_address Email

The user is recognized by something that he has, either a mobile-phone (SIM-card) able to receive
an SMS message or access to an e-mail account. The user enters either his mobil-phone number or

16

his e-mail address and a one-time password is sent to this address. If more than one match is found
the user may be given a choice of which entity to impersonate.

An Applicationlmplementation may of course offer a combination of these two concepts, that is
requiring both Username / Password and a Loginldentificator. This would correspond to the
concept of identifying a user both by something the user knows and something the user has.

14 Schema access and administrator roles, boot-strapping
a new implementation

For any specific Applicationlmplementation, administrator rights should be required in order to
change a schema. The GivingRole-keyword GivingAdministrator can be used to grant
administrator rights to the entity being impersonated:

Administrator_group

Name
Administrator_person RelationMany GivingAdministrator
Changes Log
Person
First_name
Last_name
Administrator_person RelationOne
Username Username
Password Password
Mobil_phone SMS

GivingAdministrator means that a relation to an entity of type ” Administrator group” gives the
related entity Administrator-rights. In this case ”Persons” related to an entity of type
” Administrator group” become themselves administrators.

An Implementation can use this information to give administrator privileges to any ”Person”
related to an Administrator group. It should be implicit that Administrator-role is needed for any
access to a GivingAdministrator-entity. Read access could however be specified, for instance
ReadEveryone, enabling users of an Applicationlmplementation to see which persons have
administrator rights and may be contacted for assistance.

Note that in this case the ”Person”-entity is specified with both Username / Password properties
and a log in identificator in the form of a mobile phone number which can receive SMS-messages.
In addition all changes to any GivingAdministrator-entity is logged.

For a freshly created database without any entities defined, there must be a process of
boot-strapping the environment. One possibility, used by a specific Implementation
MyLittleDatabase.com, is outlined below:

17

MyLittleDatabase.com gives Anonymous access to all entities for a freshly created database. This
access is revoked after the first entity with log in credentials is created (in this case after a
”Person”-entity is created).

Therefore, a new GivingAdministrator-entity (Administrator group) and a new Person-entity may
be created anonymously.

Every entity with log in credentials is considered an administrator as long as no relations are added
to any GivingAdministrator-entity (Administrator group). The first ” Person”-entity is therefore
considered an administrator and may therefore enter itself into the Administrator group, giving
itself permanent Administrator privileges.

After that only ”"Persons” in the Administrator group may add or delete new administrators.

Note that it could be possible to place log in information directly under a GivingAdministrator
entity like this, much more simpler (but not supported in panSL), example:

Administrator_group GivingAdministrator
First_name
Last_name
Mobil_phone SMS

The property type "Mobil phone” with datatype SMS makes it possible to log in as an
Administrator-entity. In this manner logging in as an administrator is totally separated from
logging in as a normal user. This solution might have been simpler to implement and understand
but would probably feel slightly unnatural for the users. It is therefore not supported by current
Implementations of panSL.

Note: As of February 2012 this boot-strapping mechanism has not been tested thoroughly in a
production environment. Some changes to the methods and syntax given may therefore be done in
the formal version of panSL.

15 Granting access rights through relationships

For simple solutions is might not be desired or practical for users to grant access rights to specific
entities, like outlined earlier in this document. Such access-granting requires changes in the schema,
and may be too coarse-grained.

Often the relationship in itself should be sufficient to indicate desired access, especially when
entities are close together in the natural world like a family and its members. This can be done
with the same GivingRole mechanism outlined earlier in this document but by using GivingOwner
instead of GivingAdministrator.

Family ReadEveryone ChangeOwner

18

Name

Family_membersship RelationMany GivingOwner
Person ReadEveryone ChangeOwner

First_name

Last_name

Family_membersship RelationOne

Mobil_phone SMS

Both ”Family” and ”Person” demand Owner-role in order to do any changes.

The ”Person”-entity has defined a Loginldentficator ”Mobile phone” making it possible to
impersonate a ”Person”, which in turn implicitly should result in Role Owner. This means that
management of a ”Person”-entity is possible in a natural manner.

But the management of a ”Family”-entity would normally be limited to its Owner, that is the
impersonated entity creating the ”Family”-entity originally. A more natural solution would be if
every member of a family could manage it. The GivingOwner-keyword in the ”Family
membersship” relation does just this, by giving Owner-role to any ”Person” related to the ”Family”.

In practical terms: Person A creates a Family entity (becoming its owner). He then adds person B
to the family. Person B is then automatically granted the Owner-role throught the keyword
GivingOwner making also him or her able to manage the Family-entity.

Note that GivingOwner is restricted to the single related entity, but the
GivingAdministrator-keyword outlined earlier in this document gives Administrator-role valid for
all entities (for the whole database).

It would be natural to consider, in addition to GivingAdministrator and GivingOwner already
outlined, the keyword ” GivingEveryone”, but this would probably not confer any meaningful
information. In order to be given Everyone-role an entity must already have been recognized, that
is it would already have the role Everyone.

Note: As of March 2012 this access granting mechanism has not been tested thoroughly in a
production environment. Some changes to the methods and syntax given may therefore be done in
the final version of panSL.

16 Meta tags, future versions of panSL

Meta tags are proposed as starting with a name followed by a colon. The colon would signify that
the meta tag is not part of the schema definition per se but describes something about the schema.

The meta tags "SchemaName” and ”panSLVersion” can be used like this:

panSLVersion: 0.9
SchemalName: Test

19

Person
First_name
Last_name

”SchemaName” would be used by an Implementation to name a database, code-project and
application.

"panSLVersion” would be useful for future versions of the language. In absence of a
panSLVersion-declaration version 1.0 should be assumed.

Note that this document is preliminary and does not describe any final or specific version of panSL.
Other proposed meta tags are

"Status”: With specifiers like ” Development”, " Test”, ” ProductionTest”, ” Production”. This
would greatly simplify the process of setting up testing environments and making it easy for an
Implementation to indicate clearly to the user what kind of environment he or she is working in
(test or production).

”Version”: For official versioning of a schema / database. This would be useful for complicated
schemas where it would be important to keep track of different versions (note that SchemaName
could also be appended with versioning information allowed concurrent testing of different versions
at the same time).

17 Formal specification of panSL

This section is an attempt to define panSL. It is not complete, nor formally 100 percent correct.
See also panSL.org/Reference and panSL.org/Samples.

Any ambiguities should be resolved by looking at how leading Implementations of panSL like
AgoRapide.com parse and use the language.

The author would welcome initiatives for starting a formal standardisation process of panSL.

Blank lines are ignored.

Indentation either by SPACE (ASCII value 32) or TAB (ASCII value 9) is used to indicate
hierarchical order.

Zero indentation indicates a root property-type or entity.

The number of indentation steps are not important as long as it is consistent. A parser accepting
inconsistent indentation (varying number of indentation steps) should always output a consistent

20

version after parsing clearly showing its interpretation.

By newline is meant either a single character with ASCII value 10 or two characters with ASCII
values 10 and 13.

An underscore character, ”_”, at the end of a line means that the following line should be

concatenated to the end of the line containing the underscore. In other words the following
newline-character shall be removed when parsing, together with the underscore. This corresponds
to the ”Visual Basic style” of line continuation for long statements.

A newline character marks the beginning of a new property type definition. However, newline
characters within Java-style block markers { and } are to be treated like whitespace (SPACE or
TAB).

Java-style comments, either single-line commments // or multiline (block comments) /* ... */ may
be used and should be interpreted according to the specification for version 1.0 of the Java
programming language.

A schema may optionally start with any of the following elements:

[PanSLVersion: decimalNumber]
[SchemaName: name]

A property type is defined by its name followed, optionally, by one or more specifier keywords
separated by whitespace (SPACE or TAB).

PropertyName [DataType] [Cardinality] [IdentificationUsefulness]
[AccessRole] [Default] [GivingRole]

The PropertyName itself may not contain any white space (expect when using — and / to specify
SubNames). Underscore should be used for space and the corresponding replacement done at
Ul-level by the actual Implementation.

PropertyName may consist of the following SubNames, either

[SingularName] / [PluralName]

or

[UIName] | [ModelName] | [ERDiagramRole] | [UserfriendlyName] / IdentificatorName

The vertical bar | and slash / are used as separators within the PropertyName. Space is permitted
before and after the separators.

21

If a particular SubName within the PropertyName is not given the name of its closest right-hand
neighbour is used instead. As a minimum the identificator must be specified.

A PropertyType may be derived (calculated) from other PropertyTypes by using the equal-sign,
that is writing PropertyName as ”Name = [Formula]”. DataType Formula is then implicit and
Cardinality becomes unneccesary to specify.

The order of the specifier keywords is not significant.

Any group of specifier keywords may be enclosed in Java-style block-markers, { and }. Within such
a block newline characters may be used in addition to SPACE or TAB for separating
keyword-specifiers, and Java-style comments may be used withing these lines again.

(A parser could remove all comments within a Java-style block first, then replace newline with
SPACE and then remove the block-markers { and } before parsing the keyword specifiers).

DataType may be one of:

Heading, ShortText, LongText, Integer,
Decimal, Percent, Date, URL, Relation,
History, Username, Password, SMS, EMail

DataType Heading is only valid for property types with children.
DataTypes other than Heading is only valid for property types without children.

DataType History must be accompanied with one or more HistoryType-specifiers like

Create, Read, Update, Delete

Cardinality is not legal at entity-level (not legal for root property types). For all other property
types Cardinality may be one of:

Obligatory, Optional, ChooseOne, ZeroToMany, OneToMany

IdentificationUsefulness may be one of the following

Essential, Useful, Additional

AccessRole may be one of any combination of

Create, Read, Update, Delete

22

plus either

Administrator, Owner, Everyone, Anonymous

or a entity primary key enclosed in parentheses. Examples of such combinations:
CreateEveryone, ReadAnonymous, Update(42), Delete(42)

Default is followed directly with an integer from 1 upwards. Example:

Defaultil

GivingRole is only relevant when the DataType is Relation. It may be one of the following:

GivingAdministrator
GivingOwner

18 Simplifications

The following Simplifications are possible:

At entity-level (root property type), DataType is simplified as:
Heading -> [Nothing]
When the property type has children, DataType + Cardinality is simplified as:

Heading Obligatory -> [Nothing]
Heading ZeroToMany -> Many

When the property type does not have children, DataType + Cardinality is simplified as:

ShortText Obligatory -> [Nothing]
ShortText ZeroToMany -> Many

Other cases, DataType plus Cardinality is simplified as:

23

Heading ChooseOne -> Type

Relation Obligatory -> RelationOne
Relation ZeroToMany -> RelationMany
LongText Obligatory -> LongText
Date Obligatory -> Date

Decimal Obligatory -> Decimal
Integer Obligatory -> Integer

SMS Obligatory -> SMS

EMail Obligatory -> EMail

Other cases:

History ZeroToManyReverseAdd Create Update Delete -> Log

For a PropertyType whose children are all of DataType Existence and Cardinality ChooseOne (in
other words, when the PropertyType is an Enumeration) the children are put onto the same line
separated with commas. Example:

Gender
Male Existence Chooselne
Female Existence Chooselne
Unknown Existence Chooselne

is shortened to

Gender
Male, Female, Unknown

AccessRoles with the same Role for Create, Read, Update and Delete is shortened to just the Role.
Example:

Create0Owner ReadOwner UpdateOwner Delete(Owner -> (Owner

AccessType with the same Role for Create, Update and Delete is shortened to Change plus the
Role. Example:

CreateOwner UpdateOwner DeleteOwner -> ChangeQOwner

AccessType with the same entity primary-key for Create, Read, Update and Delete is shortened to
Access plus the entity primary-key. Example:

24

Create(42) Read(42) Update(42) Delete(42) -> Access(42)

Access with the same entity primary-key for Create, Update and Delete is shortened to Change
plus the entity primary-key. Example:

Create(42) Update(42) Delete(42) -> Change(42)

(A parser could expand all Simplifications before attempting to parse the property type)

19 Use of panSL today, MyLittleDatabase.com and
AgoRapide.com

panSL is currently a central aspect of two web based services

1) MyLittleDatabase.com: panSL is used as the central element to build and host small web
accessible Applicationlmplementations complete with security management. Ordinary users may
create solutions themselves, or they may ask for assistance by freelance developers. If a solution
with MyLittleDatabase grows very big and more complex features are needed, then AgoRapide (see
next paragraph) may be used to export autogenerated code and data to a traditional setup for
continued traditional development.

2) AgoRapide.com: panSL is used as a preliminary specification mechanism making it easier to try
out different data structures and access patterns. After the preliminary phase the system is used to
autogenerate code for continued development with traditional tools. The developer chooses his or

her own favourite paradigms and tools. AgoRapide strives to support all the popular combinations.

In addition to being suitable for developers wanting a quick way to prototype with their customers,
AgoRapide might also be useful in an educational setting. AgoRapide can show practical
implications of different strategies, for instance different ways of solving the ”impedance mismatch”
problem between the object oriented programming world and the relational database world.

20 Conclusion, how panSL can contribute to cheaper and
better software development

By basis in this document and the examples given we claim that:

1) panSL gives ordinary users an easier entrance to the world of software development. panSL
encompasses several different aspects of software development in one language, lowering the level of
knowledge needed to getting started.

25

2) panSL may also reduce the number of applications and tools a developer has to install in order
to prototype Applicationlmplementations. A web-based Implementation like AgoRapide.com for
instance offers instant prototyping without any local tool installation at all.

3) panSL makes it easier and quicker to prototype database-centric applications. Big changes in the
database-schema can quickly be tried out and just discarded if not found to be useful.

4) panSL is suitable as a starting point for automatic creation of database schema, object oriented
code and user interface. This is demonstrated by the Implementation AgoRapide.com (in
alpha-version at the moment).

5) panSL is suitable for building simple but complete database-centric applications. A web-based
Implementation MyLittleDatabase.com demonstrates this by offering development and hosting of
applications using panSL as a single-point of specification.

Note: Reference information is available at panSL.org/Reference. More samples are available at
panSL.org/Samples.

21 About the author

Bjorn Erling Flgtten currently lives in the city of Trondheim in Nor-
way. He has worked within software development for about 20 years.
He has a background as an Engineer within Computers and Electron-
ics. Bjgrn has been repeatedly involved in the creation of new com-
panies within diverse areas of business. The last year and a half he
has studied mathematics at the Norwegian University of Science and
Technology while simultaneously working on new ideas for software
development. He is currently working on the commercialization of
two new services, MyLittleDatabase.com and AgoRapide.com, both
of which uses panSL as a central aspect. He may be contacted at
e-mail address bef@bef.no.

26

